
Parallel Fortran Unit Testing Framework
Installation, Usage, and API

Tom Clune

Software Systems Support Office
Earth Science Division

NASA Goddard Space Flight Center

April 31, 2012

Tom Clune (SSSO) pFUnit - NCAR April 31, 2012 1 / 81

Outline

1 Introduction

2 System requirements

3 Installation

4 Documentation

5 API
Assertions and Exceptions
API - BaseAddress and ProcedurePointer
API - TestCase

6 Driving pFUnit

7 F2kUnit

8 Exercises

Tom Clune (SSSO) TDD - Introduction- NCAR April 31, 2012 2 / 81

pFUnit fact sheet

History
I original “unfunded” development - 2005
I NASA Open Source Agreement (NOSA) - 2006
I HEC funding for documentation/tutorial - 2010
I SBIR grant to Tech-X to integrate within Eclipse/Photran
I Primary interfaces have been stable for years (too few users?)

Targeted at technical software written in Fortran
I Developed using TDD in (almost) standard Fortan
I Supports testing of parallel software based on MPI
I Extensive support for multidimensional FP arrays
I Parameterized tests

“F2kUnit” - next release, rewrite from scratch in F2003 and OO
I Very extensible
I Core cababilities are complete, but need to integrate various little things

Tom Clune (SSSO) TDD - Introduction- NCAR April 31, 2012 3 / 81

Projects using pFUnit

Development of pFUnit itself (bootstrapping)

New implementation of SMVGear chemistry solver

Large portion of re-engineered DYNAMO (pseudospectral MHD)

Virtual snowflake simulation
I Initial implementation serial
I pFUnit used to develop MPI extension
I pFUnit used to create entirely new multi-lattice version

A couple of small packages in GISS modelE
I hand timers
I Tracer metadata infrastructure

Tom Clune (SSSO) TDD - Introduction- NCAR April 31, 2012 4 / 81

pFUnit Architecture

Tom Clune (SSSO) TDD - Introduction- NCAR April 31, 2012 5 / 81

Anatomy of a Unit Test

Tom Clune (SSSO) TDD - Introduction- NCAR April 31, 2012 6 / 81

Outline

1 Introduction

2 System requirements

3 Installation

4 Documentation

5 API
Assertions and Exceptions
API - BaseAddress and ProcedurePointer
API - TestCase

6 Driving pFUnit

7 F2kUnit

8 Exercises

Tom Clune (SSSO) TDD - System requirements- NCAR April 31, 2012 7 / 81

System requirements

Unix (Linux, OS X, ...)

GNU make

Fortran 95 compiler with F2003 C-Interoperability extensions
Currently supported compilers:

I Intel (ifort)
I GNU (gfortran)
I NAG (nagfor)
I IBM (xlf)
I PGI (pgf)

Porting to other compilers should be straightforward.

MPI - optional

Tom Clune (SSSO) TDD - System requirements- NCAR April 31, 2012 8 / 81

Outline

1 Introduction

2 System requirements

3 Installation

4 Documentation

5 API
Assertions and Exceptions
API - BaseAddress and ProcedurePointer
API - TestCase

6 Driving pFUnit

7 F2kUnit

8 Exercises

Tom Clune (SSSO) TDD - Installation- NCAR April 31, 2012 9 / 81

Installation - obtaining source code

pFUnit is maintained in a git repository on sourceforge

Via git from sourceforge:

% g i t c l o n e g i t : / / p f u n i t . g i t . s o u r c e f o r g e . n e t / g i t r o o t / p f u n i t / p f u n i t pFUnit

Or use your browser to download nightly snapshot
http://sourceforge.net/projects/pfunit/files/Source/pFUnit.tar.gz/download

% t a r −x z f pFUnit . t a r . gz

Tom Clune (SSSO) TDD - Installation- NCAR April 31, 2012 11 / 81

http://git-scm.com
http://sourceforge.net/projects/pfunit/files/Source/pFUnit.tar.gz/download

Installation - build library and self tests

1 Change directory

% cd pFUnit

2 Build library and run self tests

% make t e s t s
. . .
t e s t s / t e s t s . x
. .
103 run , 0 f a i l e d 0 . 0 3 s e c o n d s

% make t e s t s MPI=YES
. . .
mpirun −np 5 . / mpi pFUnit . x
. .
115 run , 0 f a i l e d 0 . 0 7 s e c o n d s

3 Override default compiler

% make t e s t s F90 VENDOR=<vendor >

Table: Supported compilers
F90 Vendor Compiler

Intel (default) ifort
NAG nagfor
IBM xlf
PGI pgf90
GNU/ gfortran
Gfortran

Tom Clune (SSSO) TDD - Installation- NCAR April 31, 2012 13 / 81

Installation - build library and self tests

1 Change directory

% cd pFUnit

2 Build library and run self tests

% make t e s t s
. . .
t e s t s / t e s t s . x
. .
103 run , 0 f a i l e d 0 . 0 3 s e c o n d s

% make t e s t s MPI=YES
. . .
mpirun −np 5 . / mpi pFUnit . x
. .
115 run , 0 f a i l e d 0 . 0 7 s e c o n d s

3 Override default compiler

% make t e s t s F90 VENDOR=<vendor >

Table: Supported compilers
F90 Vendor Compiler

Intel (default) ifort
NAG nagfor
IBM xlf
PGI pgf90
GNU/ gfortran
Gfortran

Tom Clune (SSSO) TDD - Installation- NCAR April 31, 2012 13 / 81

Installation - build library and self tests

1 Change directory

% cd pFUnit

2 Build library and run self tests

% make t e s t s
. . .
t e s t s / t e s t s . x
. .
103 run , 0 f a i l e d 0 . 0 3 s e c o n d s

% make t e s t s MPI=YES
. . .
mpirun −np 5 . / mpi pFUnit . x
. .
115 run , 0 f a i l e d 0 . 0 7 s e c o n d s

3 Override default compiler

% make t e s t s F90 VENDOR=<vendor >

Table: Supported compilers
F90 Vendor Compiler

Intel (default) ifort
NAG nagfor
IBM xlf
PGI pgf90
GNU/ gfortran
Gfortran

Tom Clune (SSSO) TDD - Installation- NCAR April 31, 2012 13 / 81

Installation - build library and self tests

1 Change directory

% cd pFUnit

2 Build library and run self tests

% make t e s t s
. . .
t e s t s / t e s t s . x
. .
103 run , 0 f a i l e d 0 . 0 3 s e c o n d s

% make t e s t s MPI=YES
. . .
mpirun −np 5 . / mpi pFUnit . x
. .
115 run , 0 f a i l e d 0 . 0 7 s e c o n d s

3 Override default compiler

% make t e s t s F90 VENDOR=<vendor >

Table: Supported compilers
F90 Vendor Compiler

Intel (default) ifort
NAG nagfor
IBM xlf
PGI pgf90
GNU/ gfortran
Gfortran

Tom Clune (SSSO) TDD - Installation- NCAR April 31, 2012 13 / 81

Installation - final step

1 Choose a location (outside pfunit source) in which to install libraries,
include files, and Fortran modules.

2 Set the PFUNIT environment variable to the chosen location
You will want a separate directory for MPI and serial builds of pFUnit.

bash % e x p o r t PFUNIT=<path>

csh,tcsh % s e t e n v PFUNIT <path>

3 Use make to perform installation step

% make i n s t a l l INSTALL DIR=$PFUNIT

If installation was successful then you should see the following
subdirectiories:

% l s $PFUNIT
b i n i n c l u d e l i b mod

Tom Clune (SSSO) TDD - Installation- NCAR April 31, 2012 15 / 81

Outline

1 Introduction

2 System requirements

3 Installation

4 Documentation

5 API
Assertions and Exceptions
API - BaseAddress and ProcedurePointer
API - TestCase

6 Driving pFUnit

7 F2kUnit

8 Exercises

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 16 / 81

These slides ...

User guide - distributed with source (LATEXdocument)

API reference manual
I http:

//sourceforge.net/projects/pfunit/files/Documentation
I PDF and/or HTML

Note that documentation is not being actively maintained.

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 17 / 81

http://sourceforge.net/projects/pfunit/files/Documentation
http://sourceforge.net/projects/pfunit/files/Documentation

These slides ...

User guide - distributed with source (LATEXdocument)

API reference manual
I http:

//sourceforge.net/projects/pfunit/files/Documentation
I PDF and/or HTML

Note that documentation is not being actively maintained.

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 17 / 81

http://sourceforge.net/projects/pfunit/files/Documentation
http://sourceforge.net/projects/pfunit/files/Documentation

Outline

1 Introduction

2 System requirements

3 Installation

4 Documentation

5 API
Assertions and Exceptions
API - BaseAddress and ProcedurePointer
API - TestCase

6 Driving pFUnit

7 F2kUnit

8 Exercises

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 18 / 81

API - Module pFUnit

The public interfaces to pFUnit are re-exported through a module called
“pFUnit”.

Thus to access pFUnit data types and procedures, one merely needs to add
a F90 USE statement at the beginning of a module/subroutine/function:

use pFUnit

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 20 / 81

API - Module pFUnit

The public interfaces to pFUnit are re-exported through a module called
“pFUnit”.

Thus to access pFUnit data types and procedures, one merely needs to add
a F90 USE statement at the beginning of a module/subroutine/function:

use pFUnit

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 20 / 81

API: Assertions

Caution - not the same as C-style ASSERT macro

Unit tests specify behavioral costraints with assertions.

Test succeeds only if all contained assertions are valid

When an assertion fails
I pFUnit logs the test as failing
I pFUnit accumulates list of failure messages for reporting

Support for all intrinsic data types:

Logical true, false
Integer equal

Real equal, within tolerance, (less than, ...)
String same, optionally ignore differences in white space

Support for arrays: (Real - 5 dimensions, Integer - 1 dimension)
I Can compare against scalar or conformable array
I Reports first location that differs
I Uses L∞ norm, but has hooks for other norms (unused)
I Will be adding interface for relative error

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 21 / 81

API: Assertions

Caution - not the same as C-style ASSERT macro

Unit tests specify behavioral costraints with assertions.

Test succeeds only if all contained assertions are valid

When an assertion fails
I pFUnit logs the test as failing
I pFUnit accumulates list of failure messages for reporting

Support for all intrinsic data types:

Logical true, false
Integer equal

Real equal, within tolerance, (less than, ...)
String same, optionally ignore differences in white space

Support for arrays: (Real - 5 dimensions, Integer - 1 dimension)
I Can compare against scalar or conformable array
I Reports first location that differs
I Uses L∞ norm, but has hooks for other norms (unused)
I Will be adding interface for relative error

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 21 / 81

API: Assertions

Caution - not the same as C-style ASSERT macro

Unit tests specify behavioral costraints with assertions.

Test succeeds only if all contained assertions are valid

When an assertion fails
I pFUnit logs the test as failing
I pFUnit accumulates list of failure messages for reporting

Support for all intrinsic data types:

Logical true, false
Integer equal

Real equal, within tolerance, (less than, ...)
String same, optionally ignore differences in white space

Support for arrays: (Real - 5 dimensions, Integer - 1 dimension)
I Can compare against scalar or conformable array
I Reports first location that differs
I Uses L∞ norm, but has hooks for other norms (unused)
I Will be adding interface for relative error

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 21 / 81

API: Assertions

Caution - not the same as C-style ASSERT macro

Unit tests specify behavioral costraints with assertions.

Test succeeds only if all contained assertions are valid

When an assertion fails
I pFUnit logs the test as failing
I pFUnit accumulates list of failure messages for reporting

Support for all intrinsic data types:

Logical true, false
Integer equal

Real equal, within tolerance, (less than, ...)
String same, optionally ignore differences in white space

Support for arrays: (Real - 5 dimensions, Integer - 1 dimension)
I Can compare against scalar or conformable array
I Reports first location that differs
I Uses L∞ norm, but has hooks for other norms (unused)
I Will be adding interface for relative error

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 21 / 81

API: Assertions

Caution - not the same as C-style ASSERT macro

Unit tests specify behavioral costraints with assertions.

Test succeeds only if all contained assertions are valid

When an assertion fails
I pFUnit logs the test as failing
I pFUnit accumulates list of failure messages for reporting

Support for all intrinsic data types:

Logical true, false
Integer equal

Real equal, within tolerance, (less than, ...)
String same, optionally ignore differences in white space

Support for arrays: (Real - 5 dimensions, Integer - 1 dimension)
I Can compare against scalar or conformable array
I Reports first location that differs
I Uses L∞ norm, but has hooks for other norms (unused)
I Will be adding interface for relative error

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 21 / 81

API: Assertions

Caution - not the same as C-style ASSERT macro

Unit tests specify behavioral costraints with assertions.

Test succeeds only if all contained assertions are valid

When an assertion fails
I pFUnit logs the test as failing
I pFUnit accumulates list of failure messages for reporting

Support for all intrinsic data types:

Logical true, false
Integer equal

Real equal, within tolerance, (less than, ...)
String same, optionally ignore differences in white space

Support for arrays: (Real - 5 dimensions, Integer - 1 dimension)
I Can compare against scalar or conformable array
I Reports first location that differs
I Uses L∞ norm, but has hooks for other norms (unused)
I Will be adding interface for relative error

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 21 / 81

API: Assertions

Caution - not the same as C-style ASSERT macro

Unit tests specify behavioral costraints with assertions.

Test succeeds only if all contained assertions are valid

When an assertion fails
I pFUnit logs the test as failing
I pFUnit accumulates list of failure messages for reporting

Support for all intrinsic data types:

Logical true, false
Integer equal

Real equal, within tolerance, (less than, ...)
String same, optionally ignore differences in white space

Support for arrays: (Real - 5 dimensions, Integer - 1 dimension)
I Can compare against scalar or conformable array
I Reports first location that differs
I Uses L∞ norm, but has hooks for other norms (unused)
I Will be adding interface for relative error

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 21 / 81

API: Assertions (cont’d)

The most common form of assertion is:

c a l l a s s e r tEqua l (<expected >, <found >, <message >)

Test fails if found is diferrent than expected

Overloaded for integer, real (single and double), and string

Overloaded for multidimensional arrays

is optional

Example:

c a l l a s s e r tEqua l (120 , f a c t o r i a l (5) , ’ f a c t o r i a l broken ’)

Output from a failed assertion looks like:

F a i l u r e i n top : : t e s t F a c t o r i a l − I n t e g e r s c a l a r a s s e r t i o n f a i l e d :
f a c t o r i a l b roken

Expected : 120
but found : 24

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 23 / 81

API: Assertions (cont’d)

The most common form of assertion is:

c a l l a s s e r tEqua l (<expected >, <found >, <message >)

Test fails if found is diferrent than expected

Overloaded for integer, real (single and double), and string

Overloaded for multidimensional arrays

is optional

Example:

c a l l a s s e r tEqua l (120 , f a c t o r i a l (5) , ’ f a c t o r i a l broken ’)

Output from a failed assertion looks like:

F a i l u r e i n top : : t e s t F a c t o r i a l − I n t e g e r s c a l a r a s s e r t i o n f a i l e d :
f a c t o r i a l b roken

Expected : 120
but found : 24

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 23 / 81

API: Assertions (cont’d)

The most common form of assertion is:

c a l l a s s e r tEqua l (<expected >, <found >, <message >)

Test fails if found is diferrent than expected

Overloaded for integer, real (single and double), and string

Overloaded for multidimensional arrays

is optional

Example:

c a l l a s s e r tEqua l (120 , f a c t o r i a l (5) , ’ f a c t o r i a l broken ’)

Output from a failed assertion looks like:

F a i l u r e i n top : : t e s t F a c t o r i a l − I n t e g e r s c a l a r a s s e r t i o n f a i l e d :
f a c t o r i a l b roken

Expected : 120
but found : 24

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 23 / 81

API: Assertions (cont’d)

assertEqual(expected, found, tolerance , message)

I Throws exception if difference is larger than tolerance
I Example:

c a l l a s s e r tEqua l (t o t a l M a s s , sum (mass (: , : , :)) , 0 . 0 0 0 1)

assertTrue(test , message)

I Throws exception if logical test is false
I Example:

c a l l as se r tTrue (p r e s s u r e < 1 1 0 0 . , ’ p r e s s u r e l i m i t ’)

assertFalse (test , message)

I Throws exception if logical test is true

Note message argument is always optional
I Appends informative text to default text

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 25 / 81

API: Assertions (cont’d)

With only the Assertion module, developers can create a variety of
complete unit tests. E.g.,

s u b r o u t i n e testSumFrom1toN ()
use pFUnit

c a l l a s s e r tEqua l (1 0 , sumFrom1toN (4))
end s u b r o u t i n e testSumFrom1toN

or

s u b r o u t i n e t e s t C o m p u t e D e r i v a t i v e ()
use pFUnit
r e a l : : u (3)
r e a l : : dudx (2)
r e a l : : dx = 1 .

u (: , 1) = [1 . , 2 . , 2 . , 0 .]
c a l l c o m p u t e D e r i v a t i v e (u , dx , dudx)

c a l l a s s e r tEqua l ([1 . , 0 . , − 2 .] , dudx)

end s u b r o u t i n e t e s t C o m p u t e D e r i v a t i v e

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 27 / 81

API: Assertions (cont’d)

With only the Assertion module, developers can create a variety of
complete unit tests. E.g.,

s u b r o u t i n e testSumFrom1toN ()
use pFUnit

c a l l a s s e r tEqua l (1 0 , sumFrom1toN (4))
end s u b r o u t i n e testSumFrom1toN

or

s u b r o u t i n e t e s t C o m p u t e D e r i v a t i v e ()
use pFUnit
r e a l : : u (3)
r e a l : : dudx (2)
r e a l : : dx = 1 .

u (: , 1) = [1 . , 2 . , 2 . , 0 .]
c a l l c o m p u t e D e r i v a t i v e (u , dx , dudx)

c a l l a s s e r tEqua l ([1 . , 0 . , − 2 .] , dudx)

end s u b r o u t i n e t e s t C o m p u t e D e r i v a t i v e

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 27 / 81

API: Exceptions

Unit tests signal failed assertions by “throwing” an exception.

The framework “catches” exceptions
I Test is recorded as failing
I Failure messages are aggregated
I Framework continues to next test

Problem: Fortran lacks native support for exceptions

Kludge: Global stack of Exception type variables

Limitations:
I Requires manual return to caller
I Errors (as opposed to failures) crash the framework
I Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 28 / 81

API: Exceptions

Unit tests signal failed assertions by “throwing” an exception.

The framework “catches” exceptions
I Test is recorded as failing
I Failure messages are aggregated
I Framework continues to next test

Problem: Fortran lacks native support for exceptions

Kludge: Global stack of Exception type variables

Limitations:
I Requires manual return to caller
I Errors (as opposed to failures) crash the framework
I Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 28 / 81

API: Exceptions

Unit tests signal failed assertions by “throwing” an exception.

The framework “catches” exceptions
I Test is recorded as failing
I Failure messages are aggregated
I Framework continues to next test

Problem: Fortran lacks native support for exceptions

Kludge: Global stack of Exception type variables

Limitations:
I Requires manual return to caller
I Errors (as opposed to failures) crash the framework
I Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 28 / 81

API: Exceptions

Unit tests signal failed assertions by “throwing” an exception.

The framework “catches” exceptions
I Test is recorded as failing
I Failure messages are aggregated
I Framework continues to next test

Problem: Fortran lacks native support for exceptions

Kludge: Global stack of Exception type variables

Limitations:
I Requires manual return to caller
I Errors (as opposed to failures) crash the framework
I Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 28 / 81

API: Exceptions

Unit tests signal failed assertions by “throwing” an exception.

The framework “catches” exceptions
I Test is recorded as failing
I Failure messages are aggregated
I Framework continues to next test

Problem: Fortran lacks native support for exceptions

Kludge: Global stack of Exception type variables

Limitations:

I Requires manual return to caller
I Errors (as opposed to failures) crash the framework
I Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 28 / 81

API: Exceptions

Unit tests signal failed assertions by “throwing” an exception.

The framework “catches” exceptions
I Test is recorded as failing
I Failure messages are aggregated
I Framework continues to next test

Problem: Fortran lacks native support for exceptions

Kludge: Global stack of Exception type variables

Limitations:
I Requires manual return to caller

I Errors (as opposed to failures) crash the framework
I Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 28 / 81

API: Exceptions

Unit tests signal failed assertions by “throwing” an exception.

The framework “catches” exceptions
I Test is recorded as failing
I Failure messages are aggregated
I Framework continues to next test

Problem: Fortran lacks native support for exceptions

Kludge: Global stack of Exception type variables

Limitations:
I Requires manual return to caller
I Errors (as opposed to failures) crash the framework

I Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 28 / 81

API: Exceptions

Unit tests signal failed assertions by “throwing” an exception.

The framework “catches” exceptions
I Test is recorded as failing
I Failure messages are aggregated
I Framework continues to next test

Problem: Fortran lacks native support for exceptions

Kludge: Global stack of Exception type variables

Limitations:
I Requires manual return to caller
I Errors (as opposed to failures) crash the framework
I Obtaining file & line number of failure is more difficult

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 28 / 81

API: Exception Class (cont’d)

Primary methods:

throw() Pushes an exception onto the global stack.

t y p e (Except i on type) : : myExcept ion
myExcept ion = Except ion (’ Another except ion ’)
c a l l throw (myExcept ion)

Useful shortcut for usual case:

c a l l throw (‘ Th i s i s an except ion ’)

catch() Returns true if specified exception has been thrown
I Default - delete exception from global stack
I Override with optional argument preserve=.true.

i f (catch ()) then ! t r u e i f g l o b a l s t a c k i s non−empty
i f (catch (’ Th i s i s an except ion ’)) then
i f (catch (a n E x c e p t i o n)) then

catchAny() returns top exception on the stack

a n E x c e p t i o n = catchAny ()

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 30 / 81

API: Exception Class (cont’d)

Primary methods:

throw() Pushes an exception onto the global stack.

t y p e (Except i on type) : : myExcept ion
myExcept ion = Except ion (’ Another except ion ’)
c a l l throw (myExcept ion)

Useful shortcut for usual case:

c a l l throw (‘ Th i s i s an except ion ’)

catch() Returns true if specified exception has been thrown
I Default - delete exception from global stack
I Override with optional argument preserve=.true.

i f (catch ()) then ! t r u e i f g l o b a l s t a c k i s non−empty
i f (catch (’ Th i s i s an except ion ’)) then
i f (catch (a n E x c e p t i o n)) then

catchAny() returns top exception on the stack

a n E x c e p t i o n = catchAny ()

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 30 / 81

API: Exception Class (cont’d)

Primary methods:

throw() Pushes an exception onto the global stack.

t y p e (Except i on type) : : myExcept ion
myExcept ion = Except ion (’ Another except ion ’)
c a l l throw (myExcept ion)

Useful shortcut for usual case:

c a l l throw (‘ Th i s i s an except ion ’)

catch() Returns true if specified exception has been thrown
I Default - delete exception from global stack
I Override with optional argument preserve=.true.

i f (catch ()) then ! t r u e i f g l o b a l s t a c k i s non−empty
i f (catch (’ Th i s i s an except ion ’)) then
i f (catch (a n E x c e p t i o n)) then

catchAny() returns top exception on the stack

a n E x c e p t i o n = catchAny ()

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 30 / 81

API: Exception Class (cont’d)

Additional methods - should rarely be needed.

clearAll() - empty the stack

== - compare two exceptions

numExceptions()

getMessage - return string from inside derived type

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 32 / 81

API: BaseAddress and ProcedurePointer

BaseAddress type encapsulates a base address for a data entity

Allows framework to manipulate user-defined data structures

Only needed for test fixtures - discussed elsewhere

Current implementation uses new F2003 C-interoperability

Original implementation used semi-portable hack

Could probably now be replaced by F2003 unlimited polymorphic
entities

ProcedurePointer type encapsulates a base address for a procedure

Allows framework to aggregate user-defined test procedures

Uses F2003 C-interoperability

Could probably now be replaced by F2003 procedure pointers

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 34 / 81

API: BaseAddress and ProcedurePointer

BaseAddress type encapsulates a base address for a data entity

Allows framework to manipulate user-defined data structures

Only needed for test fixtures - discussed elsewhere

Current implementation uses new F2003 C-interoperability

Original implementation used semi-portable hack

Could probably now be replaced by F2003 unlimited polymorphic
entities

ProcedurePointer type encapsulates a base address for a procedure

Allows framework to aggregate user-defined test procedures

Uses F2003 C-interoperability

Could probably now be replaced by F2003 procedure pointers

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 34 / 81

API: TestResult class

TestResult type: derived type that accumulates findings from running a
sequence of tests.

How many tests have run

How many tests have failed

Accumulate report of failure messages

Wall clock time passed

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 36 / 81

API: TestResult (cont’d)

newTestResult() - generate a pristine report object

summary(this) - return 1 line string summarizing results

103 run , 2 f a i l e d 0 . 1 2 s e c o n d s

generateReport(this) - return a Report type that contains a list of all failure
messages; prepends with test/suite hierarchy

setReportMode(this, mode) - control logging
I MODE USE BUFFER (default)

F output failure messages to internal buffer

I MODE USE STDOUT

F track progress (emit ’.’, ’x’, or ’m’) for each test

I MODE USE LOGFILE

F track progress by testname in hidden “.pFUnitLog” file

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 38 / 81

Advanced Topic - Test Fixtures

Often, several tests require identical initialization steps for a group of input
variables.
A test fixture:

Provides a container for the shared input variables

Provides a setUp() method to allocate resources and/or initialize
elements

Provides a tearDown() method to deallocate resources

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 40 / 81

Test Fixtures in pFUnit

Fixtures in pFUnit are a bit of a kludge due to lack of polymorphism in
F95.
Two “obvious” approaches:

1 Use module variables and/or derived types that are accessed by test
procedures

Pro easy to implement and code
Con somewhant easy to accidentally share data between tests

2 Fake polymorphism by passing around a BaseAddress

Pro Framework provides fresh fixture for each test method
Con Requires a wrapper to handle fixture dereference
Con Wrapper complicates makefile

pFUnit supports both approaches. Focus and documentation has been on
the latter.

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 42 / 81

pFUnit simple fixture

module myTestModule
use p f u n i t
p r i v a t e
p u b l i c : : setUp , tearDown , t e s t 1

r e a l , a l l o c a t a b l e : : b u f f e r (:) ! the f i x t u r e

c o n t a i n s

s u b r o u t i n e setUp ()
i n t e g e r : : i
a l l o c a t e (b u f f e r (1 0))
b u f f e r = [(i , i =1 ,10)]

end s u b r o u t i n e setUp

s u b r o u t i n e tearDown ()
d e a l l o c a t e (b u f f e r)

end s u b r o u t i n e tearDown

s u b r o u t i n e t e s t 1 ()
c a l l a s s e r tEqua l (5 5 , sum (b u f f e r))

end s u b r o u t i n e t e s t 1

end module myTestModule

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 44 / 81

pFunit Fixture with Derived Type

module myTestModule
use p f u n i t
p r i v a t e
p u b l i c : : f i x t u r e , setUp , tearDown , t e s t 1
t y p e f i x t u r e

r e a l , a l l o c a t a b l e : : b u f f e r (:)
end t y p e

c o n t a i n s
s u b r o u t i n e setUp (t h i s)

t y p e (f i x t u r e) , i n t e n t (i n o u t) : : t h i s
a l l o c a t e (t h i s%b u f f e r (1 0))
t h i s%b u f f e r = [(i , i =1 ,10)]

end s u b r o u t i n e setUp

s u b r o u t i n e tearDown (t h i s)
t y p e (f i x t u r e) , i n t e n t (i n o u t) : : t h i s
d e a l l o c a t e (t h i s%b u f f e r)

end s u b r o u t i n e tearDown

s u b r o u t i n e t e s t 1 (t h i s)
t y p e (f i x t u r e) , i n t e n t (i n) : : t h i s
c a l l a s s e r tEqua l (5 5 , sum (b u f f e r))

end s u b r o u t i n e t e s t 1
end module myTestModule

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 46 / 81

pFunit Fixture Wrapper

module myTestModule wrap
use myTestModule , o n l y : f i x t u r e => f i x t u r e p r i v a t e
use myTestModule , o n l y : setUp => s e t U p p r i v a t e
use myTestModule , o n l y : tearDown => t e a r D o w n p r i v a t e

t y p e f i x t u r e
t y p e (f i x t u r e p r i v a t e) : : u s e r f i x t u r e
t y p e (f i x t u r e) , p o i n t e r : : s e l f r e f e r e n c e

end t y p e

! Cont inue next s c r e e n

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 48 / 81

c o n t a i n s

s u b r o u t i n e setUp (t h i s)
t y p e (f i x t u r e) : : t h i s
c a l l s e t U p p r i v a t e (t h i s%u s e r f i x t u r e)

end s u b r o u t i n e setUp

s u b r o u t i n e tearDown (t h i s)
t y p e (f i x t u r e) : : t h i s
c a l l t e a r D o w n p r i v a t e (t h i s%u s e r f i x t u r e)

end s u b r o u t i n e tearDown

s u b r o u t i n e t e s t 1 (t h i s)
t y p e (f i x t u r e) : : t h i s
c a l l t e s t 1 p r i v a t e (t h i s%u s e r f i x t u r e)

end s u b r o u t i n e t e s t 1

end module myTestModule wrap

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 50 / 81

API - TestCase class

TestMethod type derived type that binds a procedure pointer with a
meaningful name (string)

Required because Fortran lacks reflection/introspection

Allows framework to report which test ran/failed

Allows framework to select which tests to run

TestCase type derived type that contains

List of related test methods (usually just 1)

Procedure pointers for setUp() and tearDown()

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 52 / 81

API - TestCase constructors (overloaded)

test = TestCase() - used internally

test = TestCase(setUp, tearDown) - used internally fixture

test = TestCase(name, procedure) - 1 Step construction

test = TestCase(setUp, tearDown, passFixture) - “kludge” fixture

test = TestCase(setup, teardown, name, procedure) - convenience

Methods are accumulated via

c a l l addTestMethod (t h i s , name , p r o c e d u r e)

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 54 / 81

API - TestCase::run()

call run(this , aTestResult) performs the following steps for each method

1 Call testStarted()

2 Allocate fixture if any

3 Call setUp() if any

4 Check for exceptions
5 If good so far

1 Run the test method
2 Check for exceptions

6 call tearDown() if any

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 56 / 81

API - MpiTestCase

An MPI test case runs a test procedure on a group of MPI processes
Implementation considerations:

Must allow for tests using varying number of processes

Need mechanism to specify number of processes to use

Most MPI implementations are not reentrant

pFUnit self tests need to be able to run MPI test within a serial test

1 Client - Server
1 Persistent server
2 Relaunch server for each test

2 Use MPI subcommunicators within executable
1 With MPI spawn()
2 Max NPES determined at launch

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 58 / 81

API - MpiTestCase Client-Server?

Serial client interacts with MPI-based Server
Server can be persistent or relaunched for each test

Pro Pure - MPI can be relaunched for each test
Pro Can support time limits
Con 1 second overhead per test - gets expensive
Con Complex/fragile mechanism

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 60 / 81

API - MpiTestCase Subcommunicator?

Pro Low overhead per test

Pro Relatively simple driver mechanism

Con Cannot support time limits (Mpi abort() issues)

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 62 / 81

API - MpiTestCase (cont’d)

Usage is very similar to the regular TestCase, except:

Constructor - requires extra argument numProcesses

MpiTestCase (name , method , numProcesses)

Test method requires extra “info” argument (intent(in))

s u b r o u t i n e myMPItest (i n f o)
t y p e (Tes t I n f o t ype) , i n t e n t (i n) : : i n f o

. . .

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 64 / 81

API - TestInfo

The TestInfo type derived type:

Passes the mpiCommunicator to be used by the test
NO MPI COMM WORLD

comm = mpiCommunicator (i n f o)

Convenient access to other MPI values that are usually needed for
setting up an MPI test.

npes = numProcesses (i n f o)
rank = processRank (i n f o)

Several other procedures used internally by pFUnit

i f (amRoot (i n f o)) . . .
i f (amActive (i n f o)) . . . ! p a r t i c i p a t e i n t e s t
c a l l b a r r i e r (i n f o)

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 66 / 81

TestSuite

The TestSuite type derived type is a container for organizing test cases.

E.g. fast tests that are always run

Slow tests run overnight, or weekend

Personal tests vs tests for full application

The primary interfaces are

Constructors

mySuite = TestSu i te (’ mySuiteName ’) ! empty
mySuite = TestSu i te (’ mySuiteName ’ , s u i t e s) ! group o f pre−e x i s t i n g s u i t e s

Add a test

c a l l add (mySuite , t e s t)

Where test is any of:
I TestCase type

I MpiTestCase type

I TestSuite type

I ParameterizedTestCase type

Tom Clune (SSSO) TDD - Documentation- NCAR April 31, 2012 68 / 81

Outline

1 Introduction

2 System requirements

3 Installation

4 Documentation

5 API
Assertions and Exceptions
API - BaseAddress and ProcedurePointer
API - TestCase

6 Driving pFUnit

7 F2kUnit

8 Exercises

Tom Clune (SSSO) TDD - Driving pFUnit- NCAR April 31, 2012 69 / 81

A simple driver

program T e s t D r i v e r
use pFUnit
use TestMyModule mod

t y p e (Tes tSu i t e t ype) : : s u i t e
t y p e (Tes tResu l t t ype) : : r e s u l t
c h a r a c t e r (l e n =100) : : summary statement
c a l l pFUn i t i n i t ()

! Bu i l d s u i t e from t e s t p r o c edu r e s :
s u i t e = TestSu i te (’My t e s t s u b r o u t i n e s ’)
c a l l add (s u i t e , TestCase1Step (’ testMySub ’ , testMySub))
c a l l add (s u i t e , TestCase1Step (’ a n o t h e r T e s t ’ , a n o t h e r T e s t))

r e s u l t = newTestResult (mode=MODE USE STDOUT)
c a l l run (s u i t e , r e s u l t)

summary statement = summary (r e s u l t)
p r i n t ∗ , t r i m (summary statement)

c a l l c l ean (r e s u l t)
c a l l c l ean (s u i t e)
c a l l p FUn i t f i n a l i z e ()

end program T e s t D r i v e r

Tom Clune (SSSO) TDD - Driving pFUnit- NCAR April 31, 2012 71 / 81

Maintaining the List of Tests

3 choices:

Manual
I Tedious
I Error prone - failing test never gets called

Automation - use preprocessing to find test cases
I Requires a convention for test names
I Current mechanism is a bit fragile

DSO’s - not actively supported at this time
I Developer must create DSO for tests and application
I No mechanism for spcefying number of MPI processors

Tom Clune (SSSO) TDD - Driving pFUnit- NCAR April 31, 2012 72 / 81

Automated assembly of tests

pFUnit includes an automation mechanism - users my wish to improve it.

Separate directory (or directories) of tests

Tests are all module procedures

Tests must all start with the string “test...”

More details

Each module containing tests is wrapped by an automatically
generated module which bundles them into a suite.

MPI test suites are indicated with ∗∗∗ mpi test cases ∗∗∗ on the 1st line

A skeleton driver has a master test suite that includes a suite from
each of the test modules.

Developer should have

i n c l u d e $PFUNIT/ i n c l u d e /pFUnit . m a k e f i l e

in their makefile

Tom Clune (SSSO) TDD - Driving pFUnit- NCAR April 31, 2012 74 / 81

Outline

1 Introduction

2 System requirements

3 Installation

4 Documentation

5 API
Assertions and Exceptions
API - BaseAddress and ProcedurePointer
API - TestCase

6 Driving pFUnit

7 F2kUnit

8 Exercises

Tom Clune (SSSO) TDD - F2kUnit- NCAR April 31, 2012 75 / 81

F2kUnit - next release of pFUnit

Heavily leverages OO features of Fortran 2003

Complete rewrite from scratch - following design of JUnit

Superior extensibility to be extended through OO
I TestListeners - alternate reporting; e.g., Eclipse Photran
I TestRunners - customize means to select tests

Basic implementation complete - lacks many bells and whistles

Upgrade from current release should be relatively easy

Tom Clune (SSSO) TDD - F2kUnit- NCAR April 31, 2012 76 / 81

Outline

1 Introduction

2 System requirements

3 Installation

4 Documentation

5 API
Assertions and Exceptions
API - BaseAddress and ProcedurePointer
API - TestCase

6 Driving pFUnit

7 F2kUnit

8 Exercises

Tom Clune (SSSO) TDD - Exercises- NCAR April 31, 2012 77 / 81

Exercises

You will be attempting 3 exercises that use pFUnit and TDD.
https://modelingguru.nasa.gov/docs/DOC-2222

Each exercise contains a README file with instructions, and is divided
into multiple steps. If you get stuck on one step, the solution is the
starting point for the next step. E.g. the code in 1-B is the solution for
the exercise in 1-A.
Please do not hesitate to ask questions.

Tom Clune (SSSO) TDD - Exercises- NCAR April 31, 2012 79 / 81

https://modelingguru.nasa.gov/docs/DOC-2222

The provided Makefile’s are designed to work with the Intel compiler.
Exercises 1 and 3 should be done with a serial build of pFUnit, and
exercise 2 should be with a parallel build.

Exercise 1 is intended to be very simple to allow you to focus on the
pFUnit interfaces.

Exercise 2 uses MPI. Attendees that are not familiar with MPI are
encouraged to work with a partner or to proceed to Exercise 3

I On Janus we recommend:

use NCAR−P a r a l l e l − I n t e l

Exercise 3 builds upon the interpolation example from the morning
session.

Tom Clune (SSSO) TDD - Exercises- NCAR April 31, 2012 81 / 81

	Introduction
	System requirements
	Installation
	Documentation
	API
	Assertions and Exceptions
	API - BaseAddress and ProcedurePointer
	API - TestCase

	Driving pFUnit
	F2kUnit
	Exercises

